Subsidence control on river morphology and grain size in the Ganga Plain

Lizzie Dingle¹, H.D. Sinclair¹, M. Attal¹, D.T. Milodowski¹, V. Singh²

¹ School of GeoSciences, University of Edinburgh, UK ² Department of Geology, University of Delhi, India

BSG British Society for Geomorphology

Ganga Plain

West Ganga Plain

- Degrading
- Stable, incised channels
- Low floodplain sedimentation rates

Swath profile - method

Each pixel within the swath is assigned a distance (to the closest point on the channel).

e.g. Yamuna/Ganga

Source: SRTM 90m DEM

Fluvial morphology - controls

Depth to basement

Sources: SRTM 90m DEM & Seismotectonic atlas of India (Geological Survey of India)

Subsidence velocity (V_{sub})

Grain size and fining rates

(Not my legs)

Grain size and fining rates

Incision Vs Aggradation

Incision Vs Aggradation

Conclusions

- Morphology new swath analysis reveals 3D changes
- Along strike variation in subsidence velocity and grain size fining rates

Subsidence is key to determining how sensitive morphology is to regional/global climate change?

elizabeth.dingle@ed.ac.uk

@EdinLandSurf

Acknowledgements: Edinburgh University Club of Toronto, Konark Maheswari, Jamie Stewart, Debojyoti Basuroy, Arkaprabha Sarkar, Fred Bowyer, Bhairab Sitaula and Apex Adventure, Ananta Gajurel, Rachel Walcott.